Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 868: 161473, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36646216

RESUMO

This study assessed the inter-relation between physiochemical and optical characteristics of aerosols measured at a desert-urban region affected by anthropogenic sources and desert dust during October 2020 to January 2021. Based on horizontal visibility and measured PM2.5 concentration, clear (37 %), light (33 %) and high (31 %) pollution periods were identified. Elemental and organic carbon (50 ± 15 µgm-3; 31 %) and secondary inorganics (53 ± 21 µgm-3; 33 %) dominated the PM2.5 mass (160 ± 4 µgm-3) during high pollution period with low dust (14 ± 7 µgm-3; 8 %) content. Interestingly, the clear pollution period was also influenced by carbonaceous fraction (19 ± 8 µgm-3; 32 %) and secondary inorganics (19 ± 5 µgm-3; 32 %), but the PM2.5 concentrations (59 ± 9 µgm-3) were ∼ one-third as compared to high pollution period. High scattering coefficients were observed which were comparable to highly polluted Indian city like Delhi. An exponential increase in non-absorbing material was observed and showed clear influence on light absorption capacity of EC and dust due to coating/mixing. High absorption Ångström exponent (AAE) >0.6 was observed for the ratio of non-absorbing to light absorbing components (LAC) in the range of 1-2.5 and EC/PM2.5 fraction of 7-14 %. While further increase in non-absorbing to absorbing components ratio > 4 and low amount of EC (<4 %) tend to decrease AAE below 0.4. Higher mass absorption cross-section (>30 m2g-1 of EC) was observed when 4-10 % EC fraction of PM2.5 associated with 1.5-3.5 times non-absorbing components to total absorbing components. Likewise, absorption enhanced by three to five folds compared to uncoated EC for low EC fraction (3-6 %) in PM2.5, but high non-absorbing to absorbing component ratio (>2.5). Interestingly, absorption was minimally amplified for nominal coating fraction associated with significant core materials or vice-versa. These findings have implications not only in regional climate assessment but also for other regions with comparable geography and source-mixes.

2.
Environ Sci Pollut Res Int ; 30(5): 11600-11616, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36097310

RESUMO

Delhi has been identified as one of the highly polluted cities in the world and recently associated with the highest population weighted PM2.5 concentration. However, the unavailability of the health risk estimations using long-term data for Indian cities has been pointed out as a hurdle in performing the correct assessment. The present work estimated deposition of particles in different regions of respiratory systems (head airway = 67% deposition for 2.5 µm particles; tracheo-bronchiolar (TB) = 73% deposition for 1.0 µm particles; alveolar (AL) = 17% deposition for 0.5 µm, 0.25 µm, and < 0.25 µm particles) using PM samples collected at a breathing height of 1.5 m near the major ring road in New Delhi (India). The calculated risk index (RI) varied considerably between winter (1.21 ± 0.26 to 1.33 ± 0.50) and pre-monsoon-southwest monsoon months (0.34 ± 0.08 to 0.96 ± 0.27). Respiratory deposition dose of nanosized particles (≤ 500 nm) in the alveoli region of the lung was found to be considerable (35%) indicating the need for understanding the role of these particles in posing health risk. Although the calculated values of risk metric for exposures of PM-associated metals indicated no risk to IIT Delhi population (hazard quotient < 1 and excess risk of getting cancer < 10-6-10-9), continuous monitoring for particles of different sizes at inhalation height are required for protecting human health.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Cidades , Pulmão , Índia , Tamanho da Partícula , Monitoramento Ambiental , Exposição por Inalação/análise
3.
Sci Total Environ ; 841: 156730, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714742

RESUMO

The current study was designed to capture real-world cooking process-wise emissions generated by the combustion of mixed biomass fuel in traditional mud cookstoves in rural kitchens of the north Indian state of Uttar-Pradesh during regular meal preparations. Combustion characteristics, including modified combustion efficiency, thermal efficiency and burn rate, were examined to understand their relationship with emissions. Variations were observed in emission factors (EFs) of PM2.5, trace gases, namely CO, CO2, NOx and SO2, for different cooking processes. While the highest emission of PM2.5, CO and SO2 were observed for boiling (7.0 ± 2.7, 68 ± 29.3, 1.0 ± 1.7 gkg-1, respectively), CO2 and NOx recorded the highest EFs for frying (1537 ± 278.2 & 1.6 ± 0.9 gkg-1 respectively). Although the study reported similar carbon content emissions for different processes, high EC emissions were observed for baking (1.1 ± 0.3 gkg-1). A high concentration of K+ (indicating biomass burning) and toxic trace metals including Al, Cu, Sr, Ti, Mo & Cd has been reported in the present study. EFs of black carbon and brown carbon from mixed fuel burning during uncontrolled cooking have been discussed for different cooking processes which are critical inputs to emission inventories and radiative forcing calculation. The processes of frying and sautéing were found to be more consistent in emissions of pollutants than boiling and baking (variability- 13 %-167 %). Overall, this study emphasizes that a measurement of combustion characteristics and cooking method type should also be contemplated along with fuel and stove types during field emission studies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Dióxido de Carbono , Culinária , Gases , Material Particulado/análise
5.
Environ Sci Pollut Res Int ; 29(22): 33230-33251, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35022986

RESUMO

Heavy metals are persistent and bio-accumulative, and pose potential risk to human health and ecosystem. We reviewed the current state of heavy metal contamination, the ecotoxicological and human health risk of heavy metals reported in urban road dust from various cities in different continents (Asia, Europe, Africa, America, and Australia). We compared and synthesized the findings on the methods related to sample collection, extraction, analytical tools of heavy metals, their concentrations, level of contamination, ecological risk, non-carcinogenic risk, and carcinogenic risk in road dust. Concentrations of Pb, Zn, Cu, Ni, Cd, Cr, Mn, and Fe were found to be higher than their background values in soil. As expected, the contamination levels of the heavy metals varied extensively among cities, countries, continents, and periods. A high level of contamination is observed for Pb and Cd in road dust due to operating leaded gasoline and the old vehicle population. The highest Zn contamination was observed from road dust in Europe, followed by Asia, Africa, Australia, and America (North America and South America). Cu contamination and the pollution load index (PLI) is found to be the highest in Europe and lowest in Africa, with in-between values of PLI in American and African cities. The potential ecological risk on different continents was observed highest in Asia, followed by Europe, Australia, America, and Africa. A comparative assessment of non-carcinogenic risk for children indicated that Australia is the most susceptible country due to high heavy metal exposure in road dust, followed by Asia. However, there is no susceptible risk in European, African, and American cities. We did not observe any potential risk to adults due to non-carcinogenic metals. Carcinogenic risk to all age groups was within the threshold limit range for all the regions worldwide.


Assuntos
Poeira , Metais Pesados , Adulto , Cádmio , Carcinógenos/análise , Criança , China , Cidades , Poeira/análise , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Chumbo , Metais Pesados/efeitos adversos , Metais Pesados/análise , Medição de Risco/métodos
6.
Environ Monit Assess ; 193(11): 735, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669030

RESUMO

This study examined the PM10 and PM2.5 concentration, associated mortality, and transport pathways in Ghaziabad which is an industrial city in the Indo-Gangetic Plain. To achieve this, PM (both PM10 and PM2.5) and meteorological parameters were measured from June 2018 to May 2019 at 2 locations and analyzed together with data from a 3rd location in Ghaziabad. The highest daily average PM10 and PM2.5 concentrations were ~ 1000 µg m-3 and ~ 450 µg m-3, respectively. At each of the three locations, the annual mean PM10 concentrations were ~ 260 ± 150 µg m-3 while the PM2.5 concentrations were 140 ± 90 µg m-3. Nonparametric Spearman rank correlation analysis between meteorological parameters and PM concentrations indicated that ventilation coefficient was anti-correlated with PM concentration during the post-monsoon and winter seasons (the most polluted seasons) with rank correlation values of approximately - 0.50. Multiple linear regression (MLR) revealed that the variability in local meteorological parameters account for ~ 50% variability (maximum) in PM10 mass during the monsoon and PM2.5 during the post-monsoon season. For long-range sources, cluster and concentrated weighted trajectory (CWT) analyses utilizing regional meteorology showed the impact of transported PM from sources in Arabian sea through western India in monsoon and from parts of South Asia through Northwestern IGP and neighboring cities in Uttar Pradesh in other seasons. Finally, mortality estimates show that the number of deaths attributable to ambient PM2.5 in Ghaziabad were ~ 873 per million individuals which was ~ 70% higher than Delhi.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estações do Ano
7.
Environ Sci Pollut Res Int ; 28(32): 43459-43475, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33835344

RESUMO

In this study, the air pollution-related quality of life (AP-QOL) questionnaire was carried out in two geographically and economically different groups including New Delhi (Megacity) and Hamirpur, Himachal Pradesh (town), and APE scores were linked with respiratory and cardiovascular illness. The APE-Score was developed by AP-QOL questionnaire responses using Delphi technique and further analyzed using principal component analysis (PCA). For reliability of APE-Score and AP-QOL questionnaire, α-Cronbach's test and basic statistics were performed. The linear mixed-effect model and odds ratios were used to evaluate air pollution exposure and health outcomes. Overall, 720 academicians and 276 security guards were invited to participate in the questionnaire. Cronbach's α coefficients ranged from 0.70 to 0.84 indicated significant reliability in the AP-QOL questionnaire conducted in this study. Substantial variation in respiratory symptoms and their medical history were found - 76.9% ([95% confidential interval (CI)]: (- 83.8, - 66.9) (p < 0.05)) and - 28.6% (95% CI: (- 37.8, - 18.0) (p < 0.05)), respectively, with interquartile range (IQR) increase of APE score. The odds ratios (ORs) of respiratory medical history (MH Res.) showed a significant increase from 1.01 to 1.35 for low to high air pollution exposure in the academic group of IIT Delhi. Interestingly, for an academic group of NITH, the ORs for medical history of cardiovascular (MH Card.) showed an increase from 1.08 to 1.13 for low to high APE which was not the case for IIT Delhi academicians.


Assuntos
Poluição do Ar , Qualidade de Vida , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
8.
Environ Pollut ; 268(Pt B): 115638, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039676

RESUMO

When the total ambient PM2.5 levels are several-fold higher than the recommended limit, it may be important to study the distributions of different sizes of particulate matter (PM). Here, we assess the distributions of various sizes of total PM2.5 for 12 months (on a monthly basis) in New Delhi, India. Importantly, we found that ultrafine particles (i.e., particles <0.5 µm) contribute significantly to total PM2.5. PM<0.25 were the most cytotoxic particles to human lung epithelial cells in all the 12 months. In addition, PM<0.25 were associated with significantly higher cytotoxicity per unit mass compared to other size fractions constituting PM2.5. For any given size of PM, the amount of reactive oxygen species (ROS) generated per unit mass is higher for the month of March as compared to that for the rest of the months in the year. The higher ROS generations for all sizes of PM collected in the month of March was not explained by differences in their metal content values. Our data suggests the lack of correlation between total PM2.5 levels and the highly cytotoxic PM<0.25. In summary, this work establishes the need for policy changes to routinely monitor PM<0.25 and the necessity to establish exposure limits for PM<0.25, especially when the total PM2.5 levels are breached.


Assuntos
Poluentes Atmosféricos , Produtos Biológicos , Poluentes Atmosféricos/análise , Humanos , Índia , Tamanho da Partícula , Material Particulado/análise , Estudos Prospectivos
9.
Chemosphere ; 262: 128305, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182158

RESUMO

The fine particulate matter (PM2.5) was collected at academic campus of Indian Institute of Technology, Delhi, India from January-December 2017. The PM2.5 samples were analysed for carcinogenic (Cd, Cr, As, Ni, and Pb) and non-carcinogenic (V, Cu, Zn, Fe) trace metals and their elicited effects on carcinoma epithelial cell line A549. Toxicological testing was done with ELISA kit. Same analyses were repeated for standard reference material (NIST-1648a) represents urban particulate matter. The student-t test and spearman correlation were used for data analysis. The seasonality in PM2.5 mass concentration and chemical composition showed effect on biological outcomes. The PM2.5 in post-monsoon and winter had higher amount of trace metals compared to mass collected in pre-monsoon and monsoon. Following the trend in PM mass concentration significantly (p < 0.5) lower cell viability was observed in post-monsoon and winter compared to other two seasons. NIST UPM 1648(a) samples always had higher cytotoxicity compared to ambient PM2.5 Delhi sample. Strong association of Chromium, Nickel, Cadmium, and Zinc was observed with cell viability and reactive oxygen species (ROS) production. In winter IL-6, IL-8 production were 2.8 and 3 times higher than values observed in post-monsoon and 53 and 9 times higher than control. In winter season trace metals As, Cu, Fe, in pre-monsoon Cr, Ni, As, Pb, V, and Fe, in post-monsoon Cd and V strongly correlated with ROS generation. ROS production in winter and pre-monsoon seasons found to be 2.6 and 1.3 times higher than extremely polluted post-monsoon season which had 2 to 3 times higher PM2.5 concentration compared to winter and pre-monsoon. The result clearly indicated that the presence of Fe in winter and pre-monsoon seasons catalysed the ROS production, probably OH˙ radical caused high cytokines production which influenced the cell viability reduction, while in post-monsoon PM majorly composed of Pb, As, Fe and Cu and affected by photochemical smog formation showed significant association between ROS production with cell viability. Overall, in Delhi most toxic seasons for respiratory system are winter and post-monsoon and safest season is monsoon.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Células Epiteliais/efeitos dos fármacos , Metais Pesados/toxicidade , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/análise , Células A549 , Poluentes Atmosféricos/análise , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Células Epiteliais/imunologia , Células Epiteliais/patologia , Humanos , Índia , Metais Pesados/análise , Material Particulado/análise , Estações do Ano
11.
Chemosphere ; 260: 127451, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32673876

RESUMO

This study aims to calculate deposition of PM2.5 -bound hazardous metals in different organs after inhalation of particulate matter for the Delhi (India), and to estimate risks to organs following inhalation. Bio-accessible fractions of three PM-associated carcinogenic metals (As, Pb &Cd) were calculated using the metal values in simulated lung fluids. Depositions of metals in different organs were calculated using an integrated model consists of HRT and PBPK models. The calculation indicates that the major or significant deposition of metal Pb occurs in tissues, such as bone, muscle and blood. Most of the depositions of Cd happens in lung whereas most of the depositions of As happens in lung, muscle and skin. Most of the deposition of studied metals was found in lung (45% for arsenic and 70% for cadmium of their bio -dissolved contents). The following order of depositions of metals in different tissues were found (from highest deposition to smallest deposition): As: Lung > muscle = liver; Pb: bone > blood > muscle; Cd: lung > intestine. The combined exposures of PM2.5 and its associated metals were found to give interaction-based hazard index greater than 1 for several months of the year, indicating a chance of health risk. Hazard quotient (HQ) <1 was seen for ingestion and dermal pathways, indicating no cause of concern. Findings indicate the need for doing periodic monitoring and estimating deposition doses and exposure risks of PM-associated metals to lungs and other organs for protecting human health.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Metais/análise , Material Particulado/análise , Arsênio/análise , Fenômenos Biofísicos , Cádmio , Humanos , Índia , Exposição por Inalação/análise , Pulmão/metabolismo , Metais Pesados/análise , Medição de Risco , Estações do Ano
12.
Environ Sci Pollut Res Int ; 26(29): 30413-30425, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31440973

RESUMO

The present study was carried out to determine the contamination levels of heavy metals in road dust of the National Capital Territory of Delhi (NCT), India and its consequent effect on human and environment. The levels of heavy metals (Pb, Zn, Cu, Cr, Ni, Mn, and Fe) in 9 districts (Z1-Z9) of NCT were monitored and the corresponding human health risk was estimated. District-wise evaluation of heavy metal pollution in the road dust was performed. The mean concentrations of Pb, Zn, Cu, Ni, Cr, Mn, and Fe in the road dust samples over the study area were 164.2 ± 53.2, 200.7 ± 45.3, 99.9 ± 64.8, 24.7 ± 5.7, 57.7 ± 25.9, 241.4 ± 39.8, and 11113.9 ± 1669.7 mg kg-1, respectively. PLI showed a high pollution load in the monitored nine locations, indicating an alarming condition and the urgent need for immediate remedial actions. Ecological risk assessment depicted that a 74% risk was attributed to Pb. Hazard quotient (HQ) values indicated that ingestion was the major pathway of road dust heavy metal exposure to human beings. Hazard index values showed that there was no probable non-carcinogenic risk of the heavy metals present in the road dust of the area. Children were found vulnerable to the risks of road dust metals. The findings of this study showed the alarming status of heavy metal contamination to road dust in NCT and the associated risk to human health.


Assuntos
Poeira/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Metais Pesados/análise , Medição de Risco/métodos , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Criança , Monitoramento Ambiental , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Humanos , Índia , Metais Pesados/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Urbanização
13.
Environ Sci Pollut Res Int ; 25(9): 8747-8764, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327190

RESUMO

This study presents the concentration of submicron aerosol (PM1.0) collected during November, 2009 to March, 2010 at two road sites near the Indian Institute of Technology Delhi campus. In winter, PM1.0 composed 83% of PM2.5 indicating the dominance of combustion activity-generated particles. Principal component analysis (PCA) proved secondary aerosol formation as a dominant process in enhancing aerosol concentration at a receptor site along with biomass burning, vehicle exhaust, road dust, engine and tire tear wear, and secondary ammonia. The non-carcinogenic and excess cancer risk for adults and children were estimated for trace element data set available for road site and at elevated site from another parallel work. The decrease in average hazard quotient (HQ) for children and adults was estimated in following order: Mn > Cr > Ni > Pb > Zn > Cu both at road and elevated site. For children, the mean HQs were observed in safe level for Cu, Ni, Zn, and Pb; however, values exceeded safe limit for Cr and Mn at road site. The average highest hazard index values for children and adults were estimated as 22 and 10, respectively, for road site and 7 and 3 for elevated site. The road site average excess cancer risk (ECR) risk of Cr and Ni was close to tolerable limit (10-4) for adults and it was 13-16 times higher than the safe limit (10-6) for children. The ECR of Ni for adults and children was 102 and 14 times higher at road site compared to elevated site. Overall, the observed ECR values far exceed the acceptable level.


Assuntos
Poeira/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Neoplasias/epidemiologia , Oligoelementos/análise , Emissões de Veículos/análise , Adulto , Aerossóis , Criança , Humanos , Índia , Medição de Risco , Estações do Ano
14.
J Environ Sci (China) ; 53: 39-47, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372759

RESUMO

This study presents the emission factor of gaseous pollutants (CO, CO2, and NOX) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red (NDIR) CO2 analyzer, temperature, and relative humidity (RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NOX emissions were observed from new diesel cars (post 2010) compared to old cars (post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture, however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NOX emissions. Based on the measured emission factors (g/kg), and fuel consumption (kg), the average and 95% confidence interval (CI) bound estimates of CO, CO2, and NOX from four wheeler (4W) in Delhi for the year 2012 were 15.7 (1.4-37.1) , 6234 (386-12,252) , and 30.4 (0.0-103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas (CNG) to total CO, CO2 and NOX emissions were 7:84:9, 50:48:2 and 58:41:1 respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI.


Assuntos
Poluição do Ar/estatística & dados numéricos , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Monitoramento Ambiental , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Índia , Veículos Automotores
15.
Environ Res ; 156: 167-174, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28349881

RESUMO

Personal exposure (PE) to air pollutants is driven by a combination of pollutant concentrations in indoor and outdoor environments, and time-activity pattern of individuals. The objectives of this study were to estimate personal exposure to PM2.5 and black carbon (BC), and assess the representability of ambient air quality monitoring stations to serve as surrogates for PE in New Delhi. Personal exposure to air pollutants (PM2.5-PE and BCPE) was measured using portable, battery-operated instruments (PM2.5- pDR1500 and BC- microAethalometer AE51) in a small cohort of healthy adults (n=12 in summer, n=6 in winter) with no occupational exposure. Average PM2.5-PE and BCPE (µg/m3) were 53.9±136 and 3.71±4.29 respectively, in summer and 489.2±209.2 and 23.3±14.9 respectively, in winter. Activities associated with highest exposure levels were cooking and indoor cleaning for PM2.5, and commuting for BC. Within transport microenvironments, autorickshaws were found to be the most polluted, and lowest BC exposure was registered in public buses. Comparison of fixed-site ambient monitoring data showed a higher correlation with personal exposure dataset in winter compared to summer (r2 of 0.51 (winter) and 0.21 (summer); 51% (winter) and 20% (summer)). This study highlights the need for detailed assessment of PE to air pollutants in Indian cities, and calls for a denser network of monitoring stations for better exposure assessment.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Material Particulado/análise , Fuligem/análise , Adolescente , Adulto , Cidades , Monitoramento Ambiental , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Estações do Ano , Adulto Jovem
16.
Sci Total Environ ; 586: 900-916, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238373

RESUMO

This study reports emission factors of PM2.5, elemental carbon (EC), organic carbon (OC), ions, trace elements and mass absorption cross-sections (MAC) of aerosol emitted from the on-road operation of light duty vehicles of different vintages. A portable dilution system was used to achieve complete quenching of aerosol at near ambient condition. The particles were collected on the filters and analyzed for chemical and light absorbing properties of aerosol. The diesel-powered passenger cars emitted higher PM2.5 (56-356mgkm-1) with a large fraction of EC (37-65%), while emissions from gasoline (46-78mgkm-1), and CNG vehicles (33-34mgkm-1) were low and contained low EC (5-15%) and remarkably high OC (46-91%). The MAC of aerosols for diesel vehicles (32-208m2g-1 of PM2.5) were well explained by EC content (31-62%) and showed similarity with MAC values reported for wood fuel combustion in cooking stoves indicating the two sources cannot be resolved on the basis of light absorption properties in source apportionment studies. Ionic contributions to PM2.5 were highest for 4W-gasoline (11-19%) compared to 4W-diesel (7-11%), and CNG (9-10%). The abundance of ions such as Na+, Ca2+, SO42-, NO3-, and NH4+ could be due to use of lubricant oil and abrasive nature of engine of old vehicles. Trace elements (Al, Fe, Zn, Pb, and Cu) emitted from after-treatment devices, additives in lube oil, and wearing of engine components, were found to be 2-14%, 3-8% and 11-12% of total PM2.5 for 4W of diesel, gasoline, and CNG respectively. This study indicates that aerosol emissions from on-road vehicles show a strong dependency on vehicle maintenance, engine type and after-treatment techniques.

17.
Environ Sci Pollut Res Int ; 24(1): 445-462, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726085

RESUMO

Fine aerosol fraction (particulate matter with aerodynamic diameter <= 1.0 µm (PM)1.0) over the Indian Institute of Technology Delhi campus was monitored day and night (10 h each) at 30 m height from November 2009 to March 2010. The samples were analyzed for 5 ions (NH4+, NO3-, SO42-, F-, and Cl-) and 12 trace elements (Na, K, Mg, Ca, Pb, Zn, Fe, Mn, Cu, Cd, Cr, and Ni). Importantly, secondary aerosol (sulfate and nitrate) formation was observed during dense foggy events, supporting the fog-smog-fog cycle. A total of 76 samples were used for source apportionment of PM mass. Six factors were resolved by PMF analyses and were identified as secondary aerosol, secondary chloride, biomass burning, soil dust, iron-rich source, and vehicular emission. The geographical location of the sources and/or preferred transport pathways was identified by conditional probability function (for local sources) and potential source contribution function (for regional sources) analyses. Medium- and small-scale metal processing (e.g. steel sheet rolling) industries in Haryana and National Capital Region (NCR) Delhi, coke and petroleum refining in Punjab, and thermal power plants in Pakistan, Punjab, and NCR Delhi were likely contributors to secondary sulfate, nitrate, and secondary chloride at the receptor site. The agricultural residue burning after harvesting season (Sept-Dec and Feb-Apr) in Punjab, and Haryana contributed to potassium at receptor site during November-December and March 2010. The soil dust from North and East Pakistan, and Rajasthan, North-East Punjab, and Haryana along with the local dust contributed to soil dust at the receptor site, during February and March 2010. A combination of temporal behavior and air parcel trajectory ensemble analyses indicated that the iron-rich source was most likely a local source attributed to emissions from metal processing facilities. Further, as expected, the vehicular emissions source did not show any seasonality and was local in origin.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Índia , Tamanho da Partícula , Estações do Ano
18.
Environ Sci Pollut Res Int ; 22(16): 12458-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903173

RESUMO

Airborne submicron particles (PM1) were collected using PM1 sampler during the fog-dominated days (December 2013-January 2014). PM1 values varied between 58.12 µg/m(3) and 198.75 µg/m(3), and average mass concentration was 162.33 ± 38.25 µg/m(3) while total average concentration of particle-associated polycyclic aromatic hydrocarbon (PAHs) determined was 616.31 ± 30.31 ng/m(3). This is a signal for an alarming high pollution level at this site situated in the Indo-Gangetic Plain (IGP). PAHs were extracted from filters using toluene and acetonitrile. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the high performance liquid chromatography (HPLC) technique. The extracts were analyzed for 16 target polycyclic aromatic hydrocarbons (PAHs) including carcinogenic compound benzo(a)pyrene (19.86 ± 38.98 ng/m(3)). Fluoranthene, benzo(a)anthracene, anthracene, and fluorene were the predominant compounds found in the samples collected during foggy days. Based on number of rings, four-ring PAH compounds had maximum contribution (43%) in this fog time collected submicron particles followed by three-ring (21%), five-ring (20%), six-ring (13%), and two-ring (3%), respectively. In winter and foggy days, wood and coal combustion and biomass burning also significantly contribute to the PAH levels. However, diagnostic ratio suggests diesel emissions as the prime source of PAHs at this sampling site.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/estatística & dados numéricos , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Tempo (Meteorologia) , Antracenos/análise , Benzo(a)pireno/análise , Carcinógenos/análise , Cromatografia Líquida de Alta Pressão , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Fluorenos/análise , Tamanho da Partícula , Estações do Ano
19.
Environ Sci Technol ; 42(23): 8829-34, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192805

RESUMO

Biomass fuel combustion for residential energy significantly influences both emissions and the atmospheric burden of aerosols in world regions, i.e., east and south Asia. This study reports measurements of climate-relevant properties of particles emitted from biomass fuels widely used for cooking in south Asia, in laboratory experiments simulating actual cooking in the region. Fuel burn rates of 1-2 kg h(-1) for wood species, and 1.5-2 kg h(-1) for crop residues and dried cattle dung, influenced PM2.5 emission factors which were 1.7-2 g kg(-1) at low burn rates but 5-9 gkg(-1) at higher burn rates. Total carbon accounted for 45-55% and ions and trace elements for 2-12% of PM2.5 mass. The elemental carbon (EC) content was variable and highest (22-35%) in particles emitted from low burn rate combustion (wood and jute stalks) but significantly lower (2-4%) from high burn rate combustion (dried cattle dung and rice straw). The mass absorption cross-section (MAC, m2 g(-1)) correlated with EC content for strongly absorbing particles. Weakly absorbing particles, from straw and dung combustion, showed absorption that could not be explained by EC content alone. On average, the MAC of biofuel emission particles was significantly higher than reported measurements from forest fires but somewhat lower than those from diesel engines, indicating potential to significantly influence atmospheric absorption. Both for a given fuel and across different fuels, increased burn rates result in higher emission rates of PM2.5, larger organic carbon (OC) content, larger average particle sizes, and lower MAC. Larger mean particle size (0.42-1.31 microm MMAD) and organic carbon content, than in emissions from combustion sources like diesels, have potential implications for hygroscopic growth and cloud nucleation behavior of these aerosols. These measurements can be used to refine regional emission inventories and derive optical parametrizations, for climate modeling, representative of regions dominated by primary particles from biomass fuel combustion.


Assuntos
Fontes de Energia Bioelétrica , Biomassa , Incêndios , Fenômenos Ópticos , Material Particulado/química , Absorção , Aerossóis , Carbono/análise , Tamanho da Partícula
20.
Part Fibre Toxicol ; 2: 6, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16202154

RESUMO

BACKGROUND: The burning of biomass in the developing world for heating and cooking results in high indoor particle concentrations. Long-term exposure to airborne particulate matter (PM) has been associated with increased rates of acute respiratory infections, chronic obstructive lung disease and cancer. In this study we determined the oxidative activity of combustion particles derived from the biomass fuel dung cake by examining their capacity to deplete antioxidants from a model human respiratory tract lining fluid (RTLF). For comparison, the observed oxidative activity was compared with that of particles derived from industrial and vehicular sources. RESULTS: Incubation of the dung cake particle suspensions in the RTLF for 4 h resulted in a mean loss of ascorbate of 72.1 +/- 0.7 and 89.7 +/- 2.5% at 50 and 100 microg/ml, respectively. Reduced glutathione was depleted by 49.6 +/- 4.3 and 63.5 +/- 22.4% under the same conditions. The capacity of these samples to deplete ascorbate was in excess of that observed with diesel or gasoline particles, but comparable to that seen with residual oil fly ash and considerably in excess of all three control particles in terms of glutathione depletion. Co-incubation with the metal chelator diethylenetriaminepentaacetate inhibited these losses, whilst minimal inhibition was seen with superoxide dismutase and catalase treatment. The majority of the activity observed appeared to be contained within aqueous particle extracts. CONCLUSION: These data demonstrate that biomass derived particles have considerable oxidative activity, largely attributable to their transition metal content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...